Triangle Exercise 4

Triangle Review:   Fundamentals of Triangle ,  Formula’s for Triangle , Types of Triangle , 45° – 45° – 90° Triangle , 30° – 60° – 90° Triangle , Congruent Triangles, Similar Triangles

Class Questions:   Practice Examples 1,   Practice Examples 2

Practice Questions:   Exercise 1, Exercise 2, Exercise 3 ,  Exercise 4

                                                                        

Q.16

In the below figure OX = LY = 20, find YM ?

TRIANGLE 16

A.  5

B.   6

C.   10

D.   9

E.   4

Solution; 

For Δ OLM  and  Δ XYM    (i) angles  ∠L = ∠Y and  (ii) ∠M  is common for both the triangles. Hence,  Δ OLM  and  Δ XYM are similar triangles.

OL/XY = OM/XM     ( OM = 20 + 5 = 25)

15/XY  = 25 / 5

      XY = 3

Now apply Pythagorean’s theorem to find YM.

  YM²   =  XM²   –  XY²

               = 25- 9

                 =  16

Taking square root both side

      YM  = 4

Correct answer choice is ‘E’.

                                                       

Triangle Review:   Fundamentals of Triangle ,  Formula’s for Triangle , Types of Triangle , 45° – 45° – 90° Triangle , 30° – 60° – 90° Triangle , Congruent Triangles, Similar Triangles

Class Questions:   Practice Examples 1,   Practice Examples 2

Practice Questions :   Exercise 1, Exercise 2, Exercise 3 ,  Exercise 4

error: