Practice Example -Line and Angles

Q.1

Line m1 is parallel to line m2 then what is the value of  a – 5 ?

lin1

A .  50

B.   35

C.  25

D.  20

E.  15

Solution:

In parallel lines alternate interior opposite angles are same so if we take angle ‘b’ at line ‘m2’ with the intersecting line then

lin1-4

b + 8a = 360°

As lines m1 and m2 are parallel; b and a are alternate interior angles, so b = a

a + 8a = 360

9a = 360

a = 360/9

a = 40°

So,    a – 5   =   40° – 5° = 35°

Correct Answer is  ‘B’ 

Q.2

Refer the following figure, which of the following statement is true?

lin-6

I.  line m1 is parallel to line m2

II. line m1 is not parallel to line m2

A.  Only statement I is true

B.  Only statement II is true

C.  None of the statement is true

Solution ;

Here we need to find out whether line m1 is parallel to m2 or not

As per the conditions for two lines to be parallel, the corresponding angles of parallel lines should be same with the transversal line.

In triangle ORP let us  take  ∠ ORP = x°  , ∠ ORS = y°

lin2-3

So, x +  25° + 45°  = 180°

x =  180° – 70°

x =  110°

∠ ORP + ∠ ORS should be = 180°

x +  y  = 180°

110  + y = 180°

y    =  180° – 110°

y = 70°

∠ OQT  and ∠ORS are corresponding angles with the transversal line m3

∠ OQT  = ∠ ORS = 70°

Hence statement I is true , correct answer is ‘A’.

 Q.3

Line m1 is parallel to m2 and b =65° .

lin3-2

Quantity A                              Quantity B

            Measure of ‘h’                                65°

A. Quantity A is greater

 B. Quantity B is greater

 C. Quantity A and Quantity B are equal

 D. The relationship cannot be determined

Answer

As line m1 is parallel to m2  then alternate exterior angles are congruent . Here ‘b’ and ‘h’ are alternate exterior angles ,so if  ‘b’ = 65 then h =65 .

Quantity A is equal to Quantity B ,

Correct answer choice is ‘C’.

                                                                                                                                                             

Q.4

lin4-1

If m1 ǀǀ  m2 and d = 75°  , what is the value of  g?

A.  100

B.  102

C.  110

D.  90

E.  105

Answer :

Let us  mark  angle ‘f’

lin4-2

Here d and f are alternate interior angles so both are congruent , if d = 75° then f  will be 75°.

f+g = 180

75 + g = 180

g = 180 -75

g = 105°

Correct answer is ‘E’

                                                                                                                                                              

Q.5

In the below figure a = 125° .

lin5

Quantity A                            Quantity B

125                                         b + d

A.  Quantity A is greater

 B.  Quantity B is greater

 C.  Quantity A and Quantity B are equal

 D.  The relationship cannot be determined

 Answer

Line m1 intersect m2, a +b = 180°

b = 180 – 125

b = 55°

‘b’ and ‘d’ are vertically opposite angles so both are congruent  b = d = 55°.

b+ d = 55 + 55 = 110°

If we compare Quantity A with Quantity B  ,  Quantity A is greater ,

   So, correct answer is ‘A’.

                                                                                                                                          

Q.6

lin6

In the above figure line m1 intersect  line m2 , if ‘a’ = 2b then what is a+b +c?

A. 100°

B. 200°

C. 300°

D. 290°

E. 320°

Answer

Line m1 intersect line m2 , so all vertical angles are add up to 360°.

a + b+ c + d  = 360°

a= 2b given and   c + d  (linear axiom) = 180°.

2b + b + 180 = 360°

3b = 180°

b = 180/3

b = 60°

a = 2b = 2 x 60 = 120°

a and c are vertical opposite angles  so both are congruent ;

a = c = 120°

a + b + c = 120 + 60 + 120 = 300°

 Correct answer choice is  ‘C’.

                                                                                        

Q.7

In the below figure m1 ǀǀ m2

lin7

Quantity A                                      Quantity B

a +10                                                65°

 A. Quantity A is greater

 B. Quantity B is greater

 C. Quantity A and Quantity B are equal

 D. The relationship cannot be determined

Answer

Line m1 is parallel to m2   and if we give some more notations to the figure then it will be easy to solve

lin7-1

In the figure, line m3 is a transversal line which intersects lines m1 and m2.

From the figure  x + 125° = 180°

x = 180 – 125 = 55°

x = 55 °

‘x’ and ‘a’  are alternate interior angles so both will be congruent, hence x = a  = 55°

a + 10 = 55 + 10   = 65°

Now, if we compare quantity A with Quantity B,   Both the quantities are equal ,

  correct answer will be ‘C’.

                                                                                                                               

Q.8

lin8

Refer the above figure ; m1 ǀǀ  m2  , p1 ǀǀ  p2

Quantity A                      Quantity B

a+b                                    185°

 A.  Quantity A is greater

 B.   Quantity B is greater

 C.   Quantity A and Quantity B are equal

 D.   The relationship cannot be determined

Answer

Let us add some more notations in the figure

lin8-1

Now, it is very clear that ABCD is a parallelogram addition of all the angle of a parallelogram is 360°.

a + b + g + h = 360°

h = 180 -120 = 60°

‘g’ is alternate interior angle to 120° , as both should be congruent  ‘g’  = 120°

a +b + 120 + 60 = 360°

a + b = 360° – 180°

a+ b = 180°

If we compare Quantity A with Quantity B , Quantity B  is greater ,

   The answer is ‘B’.

                                                                                                                                                          

Q.9

Refer the below figure ; m1 ǀǀ  m2

lin9

What is the value of ‘x’?

A.  75

B.  65

C.  72

D. 85

E.  70

Answer

Add some notations to the figure

lin9-1

 a = 180 – 50 = 130°

  ‘b’ is alternate interior angle so it will be  50° ( Refer Review section-Lines and Angles)

‘y’ is vertical angle , it will be equal to 110°.

ABCD is a parallelogram

a + b + x +y = 360°

130 + 50 + x + 110 = 360

x = 360 – 240

x = 70°

The answer is ‘E’.

                                                                                                   

   Q.10

In the below figure AB = AC and line m1 ǀǀ m2.

lin10

Quantity A                              Quantity B

                 Angle B                                      63°

 A.  Quantity A is greater

 B.   Quantity B is greater

 C.   Quantity A and Quantity B are equal

 D.   The relationship cannot be determined

Answer

As it is given  that AB = AC  and enclosed figure is triangle  so it is an isosceles triangle and in isosceles triangles, angles opposite to equals sides are same .

Addition of all three angles of a triangle = 180°

56 + a + a = 180

2a = 180 – 56

2a = 124

a = 62°

So, Angle B = 62°

After comparing Quantity A with Quantity B, Quantity B is greater than Quantity A.

The answer is ‘B’.

                                                                                      

Leave a Comment

error: